Data Masking

Data Masking, der Schutzschild für Ihr Unternehmen

Juli 15, 2023
Juli 15, 2023
15 Juli 2023

Um sich zu schützen, wechselt das Chamäleon seine Farbe. Die Gespenstschrecke ahmt das Aussehen eines Zweiges nach, um ihre Fressfeinde zu täuschen … dasselbe Prinzip gilt für das Data Masking. Im Folgenden finden Sie einen Überblick über einen methodischen Ansatz, der sowohl die Sicherheit als auch die Nutzbarkeit Ihrer Daten gewährleistet.

Laut dem von IBM-Experten erstellten Bericht 2022 über die Kosten einer Datenpanne belaufen sich die durchschnittlichen Kosten eines Datenlecks auf 4,35 Millionen US-Dollar. Der Bericht zeigt außerdem, dass 83 % der untersuchten Unternehmen mehr als ein Datenleck erlitten haben, und nur 17 % der Befragten gaben an, dass es sich um ihre erste Datenpanne handelte! Da es sich bei sensiblen Daten um Ihr wertvollstes Gut handelt, sind sie sehr begehrt und müssen daher wirksam geschützt werden. Persönlich identifizierbare Informationen (PII), auch personenbezogene Daten genannt, sind der wertvollste aller kompromittierten Datentypen. Um diese Daten zu schützen (und die Vertraulichkeit der Daten zu gewährleisten) hat sich das Data Masking als unverzichtbare Technik etabliert.

Was ist Data Masking?

 

Das Data Masking, das auch als Datenanonymisierung oder Datenverfremdung bezeichnet wird, wurde entwickelt, um die Vertraulichkeit sensibler Informationen zu gewährleisten. In der Theorie bedeutet Data Masking, dass echte Daten durch fiktive oder veränderte Daten ersetzt werden, wobei das Aussehen und die Struktur der Daten erhalten bleiben. Diese Methode wird häufig in Test- und Entwicklungsumgebungen sowie in Szenarien verwendet, in denen Daten an Dritte weitergegeben werden, um eine unbefugte Offenlegung zu verhindern. Das Data Masking gewährleistet die Sicherheit der Daten, während ihre Nutzbarkeit und Integrität erhalten bleibt und das Risiko einer Verletzung der Vertraulichkeit minimiert wird.

Welche Arten von Data Masking gibt es?

 

Um die Anonymisierung Ihrer Daten zu gewährleisten, kann sich das Data Masking auf verschiedene Techniken stützen, die jeweils unterschiedliche Vorteile bieten und zwischen denen Sie wählen können, um den Datenschutz zu maximieren.

Static Data Masking

 

Bei der statischen Anonymisierung, dem Static Data Masking, werden sensible Daten in einer statischen Kopie einer Datenbank verfremdet. Nach einer Analysephase werden die Daten aus der Produktionsumgebung extrahiert und als Grundlage für die Erstellung der statischen Kopie verwendet. In der Verfremdungsphase werden tatsächliche durch fiktive Werte ersetzt, Informationen teilweise entfernt oder Daten anonymisiert. Bei dieser Methode werden die Daten dauerhaft verändert und ihr ursprünglicher Zustand kann nicht wiederhergestellt werden.

Format Preserving Masking

 

Im Gegensatz zur herkömmlichen Anonymisierung, bei der die Daten durch fiktive Werte ersetzt werden, bleiben beim Format Preserving Masking (oder FPM) die Länge, die Zeichentypen und die Struktur der Originaldaten erhalten. Bei dieser Vorgehensweise werden kryptografische Algorithmen genutzt, um sensible Daten in eine irreversible, nicht identifizierbare Form zu überführen. Die so verfremdeten Daten behalten ihre Eigenschaften für die spätere Verwendung in Systemen und Prozessen, die ein bestimmtes Format erfordern.

Dynamic Data Masking

 

Beim Dynamic Data Masking (oder DDM) unterscheidet sich die dynamische Anonymisierung Ihrer Daten jedes Mal, wenn ein neuer Nutzer auf sie zugreifen will. Wenn einer Ihrer Mitarbeiter auf eine Datenbank zugreift, wendet das DDM definierte Anonymisierungsregeln an, um die Sichtbarkeit sensibler Daten einzuschränken, während autorisierte Benutzer weiterhin die eigentlichen Daten sehen. Die Verfremdung der Daten kann erfolgen, indem die Ergebnisse von Abfragen dynamisch verändert werden, indem sensible Daten durch fiktive Werte ersetzt werden oder indem der Zugriff auf bestimmte Spalten eingeschränkt wird.

On-the-Fly Data Masking

 

Im Gegensatz zur statischen Anonymisierung, bei der die Daten in einer Kopie verändert werden, findet das On-the-Fly Data Masking, das auch als Echtzeitanonymisierung bezeichnet werden kann, beim Zugriff auf die Daten statt. Dieser Ansatz gewährleistet eine stärkere Vertraulichkeit, ohne dass zusätzliche Kopien der Daten erstellt werden müssen. Der Einsatz einer Echtzeit-Anonymisierung kann zu einem erhöhten Verarbeitungsaufwand führen, vor allem bei großen Datenmengen oder komplexen Vorgängen. Dies kann zu Verzögerungen beim Zugriff auf die Daten führen.

Welche verschiedenen Techniken des Data Masking gibt es?

Zufallssubstitution

 

Bei der Zufallssubstitution werden sensible Daten wie z. B. Namen, Adressen oder Sozialversicherungsnummern durch Daten ersetzt, die nach dem Zufallsprinzip generiert werden. So können reale Namen durch fiktive Namen, Adressen durch generische Adressangaben oder Telefonnummern durch Zufallsziffern ersetzt werden.

Shuffling

 

Das Shuffling (oder Mischen) ist eine Anonymisierungstechnik, bei der die Reihenfolge sensibler Daten neu geordnet wird, ohne sie zu verändern oder wesentlich zu modifizieren. Wenn Shuffling angewendet wird, werden die sensiblen Werte in einer oder mehreren Spalten zufällig gemischt. So bleiben die Beziehungen zwischen den Originaldaten erhalten, während ihre Zuordnung zu einer bestimmten Entität nahezu unmöglich wird.

Verschlüsselung

 

Das Versprechen der Verschlüsselungstechnik, die auf das Data Masking angewandt wird, lautet, sensible Daten mithilfe eines Verschlüsselungsalgorithmus unlesbar zu machen. Die Daten werden mit einem bestimmten Schlüssel verschlüsselt, wodurch die Informationen unlesbar werden, wenn man nicht über den passenden Entschlüsselungsschlüssel verfügt.

Anonymisierung

 

Das Prinzip der Anonymisierung beruht auf der Entfernung oder Veränderung von Informationen, die eine direkte oder indirekte Identifizierung von Personen ermöglichen könnten. Dies kann unter anderem das Löschen von Namen, Vornamen oder auch Adressen umfassen.

Averaging

 

Beim Averaging-Prinzip wird ein sensibler Wert durch einen aggregierten Durchschnittswert oder eine Annäherung an diesen Wert ersetzt. In einer HR-Datenbank kann man beispielsweise mit Averaging das Durchschnittsgehalt aller Mitarbeiter in der gleichen Berufsgruppe anzeigen, anstatt ein einzelnes Gehalt auszublenden. Diese Vorgehensweise liefert eine Annäherung an den tatsächlichen Wert, ohne die spezifischen Informationen einer Person offenzulegen.

Date Switching

 

Beim Date Switching werden die Datumswerte so geändert, dass Jahr, Monat und Tag beibehalten, jedoch so gemischt oder durch andere Datumsangaben ersetzt werden, die nicht direkt mit den ursprünglichen Daten in Verbindung stehen. Das Date Switching stellt sicher, dass sensible Zeitinformationen nicht dazu verwendet werden können, bestimmte Ereignisse oder Personen zu identifizieren oder zurückzuverfolgen, während eine einheitliche Datumsstruktur beibehalten wird.

Schlussfolgerung

 

Der große Vorteil des Data Masking für Unternehmen liegt darin, dass der Informationsgehalt, die Integrität und die Repräsentativität der Daten erhalten bleibt und gleichzeitig das Risiko der Kompromittierung sensibler Daten auf ein Minimum reduziert wird. Mit Data Masking erfüllen Sie alle Ihre Compliance-Herausforderungen, ohne jemals von Ihrer Datenstrategie abweichen zu müssen.

Mit Data Masking können Unternehmen sichere Entwicklungs- und Testumgebungen schaffen, ohne die Vertraulichkeit sensibler Daten zu gefährden.

Durch die Verfremdung von Daten können Entwickler und Tester mit realistischen Datensätzen arbeiten und gleichzeitig verhindern, dass vertrauliche Informationen offengelegt werden. So kann die Effizienz von Entwicklungs- und Testprozessen gesteigert und die Risiken, die mit der Verwendung echter sensibler Daten verbunden sind, verringert werden.

zeenea logo

At Zeenea, we work hard to create a data fluent world by providing our customers with the tools and services that allow enterprises to be data driven.

zeenea logo

Chez Zeenea, notre objectif est de créer un monde “data fluent” en proposant à nos clients une plateforme et des services permettant aux entreprises de devenir data-driven.

zeenea logo

Das Ziel von Zeenea ist es, unsere Kunden "data-fluent" zu machen, indem wir ihnen eine Plattform und Dienstleistungen bieten, die ihnen datengetriebenes Arbeiten ermöglichen.

Related posts

Articles similaires

Ähnliche Artikel

Be(come) data fluent

Read the latest trends on big data, data cataloging, data governance and more on Zeenea’s data blog.

Join our community by signing up to our newsletter!

Devenez Data Fluent

Découvrez les dernières tendances en matière de big data, data management, de gouvernance des données et plus encore sur le blog de Zeenea.

Rejoignez notre communauté en vous inscrivant à notre newsletter !

Werden Sie Data Fluent

Entdecken Sie die neuesten Trends rund um die Themen Big Data, Datenmanagement, Data Governance und vieles mehr im Zeenea-Blog.

Melden Sie sich zu unserem Newsletter an und werden Sie Teil unserer Community!

Let's get started

Make data meaningful & discoverable for your teams

Los geht’s!

Geben Sie Ihren Daten einen Sinn

Mehr erfahren >

Soc 2 Type 2
Iso 27001
© 2025 Zeenea - All Rights Reserved
Soc 2 Type 2
Iso 27001
© 2025 Zeenea - All Rights Reserved

Démarrez maintenant

Donnez du sens à votre patrimoine de données

En savoir plus

Soc 2 Type 2
Iso 27001
© 2025 Zeenea - Tous droits réservés.