Devops Concept With Infinite Loop On Abstract Technology Background

Tout savoir sur la Data Observability

octobre 11, 2022
octobre 11, 2022
11 octobre 2022

Les entreprises collectent et traitent davantage de données qu’elles ne le faisaient hier et bien moins qu’elles ne le feront demain. Après le développement d’une vraie culture data, il est essentiel de disposer d’une visibilité totale et continue sur ses données. L’objectif ? Anticiper tout problème et toute éventuelle dégradation des données. C’est la fonction que remplit la Data Observability, ou observabilité des données. Explications.

4,95 milliards d’internautes. 5,31 milliards de mobinautes. 4,62 milliards d’utilisateurs actifs des réseaux sociaux. Les chiffres du Digital Report 2022 Global Overview de HootSuite et We Are Social illustrent à quel point le monde entier est connecté. Une digitalisation galopante qui fait exploser le nombre de données à la disposition des entreprises. Rien qu’au cours de l’année 2021, 79 zettabytes de données auraient été produits et collectés, un chiffre 40 fois supérieur au volume de données généré en 2010 ! Et selon les chiffres publiés par Statista, d’ici la fin 2022, le seuil des 97 zettabytes serait atteint et il pourrait doubler à l’horizon 2025. Cette profusion d’informations est un défi pour les entreprises.

La collecte, la gestion, l’organisation et l’exploitation des données peut devenir un casse-tête car, à mesure qu’elles sont manipulées, déplacées, elles peuvent être dégradées, voire rendues inexploitables. La Data Observability (ou observabilité des données) est une des pistes qui vous permettra de reprendre le contrôle sur la fiabilité, la qualité et l’accessibilité de vos données.

Qu’est-ce que la Data Observability ?

L’observabilité des données est une discipline qui consiste à analyser, comprendre, diagnostiquer et gérer la santé des données en s’appuyant sur plusieurs outils informatiques tout au long de leur cycle de vie.

Pour vous engager sur la voie de la Data Observability, il faudra constituer une plateforme d’observabilité des données. Celle-ci vous permettra alors non seulement de disposer d’une vision précise et holistique de vos données mais aussi d’identifier les problèmes de qualité, de duplication – en temps réel. Comment ? En s’appuyant sur des outils de télémétrie continue.

Ne pensez pas pour autant que l’observabilité des données se limite à une mission de surveillance des données. Cela va plus loin. La Data Observability contribue également à optimiser la sécurisation de vos données. En effet, la vigilance permanente sur les flux de données permet de garantir l’efficacité des dispositifs de sécurisation. Elle agit comme un moyen de détection précoce de tout problème éventuel.

Quels sont les bénéfices de l’observabilité des données ?

Le premier bénéfice de la Data Observability, c’est la capacité à anticiper la dégradation éventuelle de la qualité ou de la sécurité de vos données. Le principe de l’observabilité reposant sur une surveillance continue et automatisée de vos données, vous pourrez détecter très précocement toute difficulté.

De cette visibilité de bout en bout et en permanence sur vos données, vous pourrez tirer un autre bénéfice : celui de la fiabilisation de vos flux de collecte et de traitement de vos actifs data. Alors que les volumes de données sont toujours plus importants et que l’ensemble de vos processus de décision sont liés à la data, il est essentiel d’assurer la continuité du traitement de l’information. Chaque seconde d’interruption dans les processus de gestion de la donnée peut s’avérer préjudiciable pour votre activité.

L’observabilité des données permet non seulement de limiter votre exposition au risque d’interruption mais aussi de rétablir les flux dans les meilleurs délais en cas d’incident.

Les 5 piliers de la Data Observability

Pour exploiter le plein potentiel de l’observabilité des données, il s’agit de comprendre le périmètre d’action de votre plateforme. Celle-ci s’articule autour de cinq piliers fondamentaux.

Pilier N°1 : la Fraîcheur

Une plateforme de Data Observability vous permet notamment de vérifier la fraîcheur des données et ainsi lutter efficacement contre l’obsolescence de l’information. Le principe : garantir la pertinence de la connaissance tirée de la donnée.

Pilier N°2 : la Distribution

La notion de distribution est essentielle lorsque l’on s’intéresse à la fiabilité des données. Le concept est simple : s’appuyer sur la valeur probable d’une donnée pour en prédire la fiabilité.

Pilier N°3 : le Volume

Pour savoir si vos données sont bien complètes, il faut anticiper le volume attendu. C’est ce que propose la Data Observability qui permet d’estimer, pour un échantillon donné, le volume nominal attendu et de comparer avec le volume de données disponible. Lorsque les variables concordent, les données sont complètes.

Pilier N°4 : le Schéma ou programme

Savoir si vos données ont été dégradées. C’est la vocation du Schéma, également appelé Programme. Le principe consiste à assurer la surveillance des modifications apportées aux tables de données et à l’organisation des datas pour identifier plus rapidement les données endommagées.

Pilier N°5 : le Lineage

En assurant la collecte des métadonnées et en effectuant un mapping rigoureux des sources de data, il est possible, comme pour une fuite d’eau dans une robinetterie, de repérer dans les délais les plus brefs et avec une grande précision, les sources et points d’interruption dans vos processus de traitement des données.

Comprendre la différence entre Data Observability et Data Quality

Si l’observabilité des données est un des éléments qui permet d’optimiser en continu, la qualité de vos données, elle diffère cependant de la Data Quality qui prévaut sur la Data Observability. En effet, pour que l’observabilité puisse être pleinement utilisée, il faut, au préalable, que la Data Quality ait été assurée.

Alors que la Data Quality mesure l’état d’un ensemble de données, et plus précisément son adéquation aux besoins d’une organisation, la Data Observability détecte, dépanne et évite les problèmes qui affectent la qualité des données et la fiabilité du système.

zeenea logo

At Zeenea, we work hard to create a data fluent world by providing our customers with the tools and services that allow enterprises to be data driven.

zeenea logo

Chez Zeenea, notre objectif est de créer un monde “data fluent” en proposant à nos clients une plateforme et des services permettant aux entreprises de devenir data-driven.

zeenea logo

Das Ziel von Zeenea ist es, unsere Kunden "data-fluent" zu machen, indem wir ihnen eine Plattform und Dienstleistungen bieten, die ihnen datengetriebenes Arbeiten ermöglichen.

Related posts

Articles similaires

Ähnliche Artikel

Be(come) data fluent

Read the latest trends on big data, data cataloging, data governance and more on Zeenea’s data blog.

Join our community by signing up to our newsletter!

Devenez Data Fluent

Découvrez les dernières tendances en matière de big data, data management, de gouvernance des données et plus encore sur le blog de Zeenea.

Rejoignez notre communauté en vous inscrivant à notre newsletter !

Werden Sie Data Fluent

Entdecken Sie die neuesten Trends rund um die Themen Big Data, Datenmanagement, Data Governance und vieles mehr im Zeenea-Blog.

Melden Sie sich zu unserem Newsletter an und werden Sie Teil unserer Community!

Let's get started

Make data meaningful & discoverable for your teams

Los geht’s!

Geben Sie Ihren Daten einen Sinn

Mehr erfahren >

Soc 2 Type 2
Iso 27001
© 2025 Zeenea - All Rights Reserved
Soc 2 Type 2
Iso 27001
© 2025 Zeenea - All Rights Reserved

Démarrez maintenant

Donnez du sens à votre patrimoine de données

En savoir plus

Soc 2 Type 2
Iso 27001
© 2025 Zeenea - Tous droits réservés.