How-to-become-data-driven-charlotte-tilbury

How to become Data Driven according to Charlotte Tilbury

May 6, 2019
May 6, 2019
06 May 2019

Zeenea’s participation in the AI & Big Data Global Expo in London on the 25th and 26th of April has officially opened the window in becoming the leading data catalog solution for data-driven enterprises. Zeenea is confident that the core of every company’s success is the ability to leverage its data assets, which can be achieved by being a truly data-driven enterprise.

During this expo, we attended some Big Data Business Solutions conferences that aimed to inform and educate on how data assets are the make-or-break of successful business decisions. A common theme across the board was how Data Science and Business Analytics are an integral component of adding value within enterprises. But how exactly can this be built into an existing company?

Dr. Andreas Gertsch Grover, the director of Data Science at Charlotte Tilbury shed light on this hot topic in his conference, How small steps get you to the promised land of a data-driven company, by showing us examples of what actually doesn’t work.

A make-up brand’s own sensational makeover

A UK beauty and makeup brand, Charlotte Tilbury is growing at a rapid rate, with a pre-money valuation at $561.22m. With revenues doubling every year, Charlotte Tilbury is headed towards becoming a unicorn company by the end of 2019 [1]. Aiming to be the best selling celebrity make-up brand, the company invested in building a Data Science team in an effort to use prediction models to vamp up their marketing and customer personalization.

With Dr. Andreas Gertsch Grover leading the way, he explains how Charlotte Tilbury has managed to build a data-driven culture to deliver successful data science projects.

The company’s discrepancy between a company’s expectations and a data scientist

“Know the roles you need in the company and not just hire a data scientist,” says Grover. Data Science projects are very complicated and need to involve all employees in the enterprise. To list a few issues data scientists can face when they join a company:

  • There is no Data Science infrastructure.
  • There are loads of data with only some identified areas in need of improvement.
  • Access to data is difficult with no documentation on these data. 

Thus, data scientists are forced to make their own environments and laboriously work on large Data Science projects virtually on their own. But when prediction models are created, they ultimately aren’t used as the company doesn’t even know how to apply it to their particular systems!

So what are the steps that need to be taken to close the gap between a company’s expectations and a data scientist’s role?

The must dos

Grover explains that due to the complex nature of Data Science projects, they must start small and be treated iteratively. By doing this, everyone in the company will be able to be involved in the learning process together. Within this collaborative framework, both employees and business stakeholders will be able to understand the business and ask the right questions, which will lead to the next small, successful project.

The must-haves

Grover supports the necessity of using tools when researching and developing their projects. As data acquisition and exploration can take up an enormous amount of time, by investing in tools that will expedite the process, it will save precious time and improve efficiency. Every person should be able to be independent and find the data they need. This particular need is Zeenea’s main goal by providing a data catalog.

The promised land of a data-driven company

Understanding and managing a company’s expectations is never easy but if everybody in an enterprise works together, the Promised Land of becoming a data-driven company is attainable. By working in small steps, iteratively, employees can learn, collaborate, and deliver major business turnovers that are both tried and true.

Sources

[1] Armstrong, P. (2018, August 13). Here are the U.K. Companies That Will Be Unicorns In 2019 Retrieved from https://www.forbes.com/

zeenea logo

At Zeenea, we work hard to create a data fluent world by providing our customers with the tools and services that allow enterprises to be data driven.

zeenea logo

Chez Zeenea, notre objectif est de créer un monde “data fluent” en proposant à nos clients une plateforme et des services permettant aux entreprises de devenir data-driven.

zeenea logo

Das Ziel von Zeenea ist es, unsere Kunden "data-fluent" zu machen, indem wir ihnen eine Plattform und Dienstleistungen bieten, die ihnen datengetriebenes Arbeiten ermöglichen.

Related posts

Articles similaires

Ähnliche Artikel

Be(come) data fluent

Read the latest trends on big data, data cataloging, data governance and more on Zeenea’s data blog.

Join our community by signing up to our newsletter!

Devenez Data Fluent

Découvrez les dernières tendances en matière de big data, data management, de gouvernance des données et plus encore sur le blog de Zeenea.

Rejoignez notre communauté en vous inscrivant à notre newsletter !

Werden Sie Data Fluent

Entdecken Sie die neuesten Trends rund um die Themen Big Data, Datenmanagement, Data Governance und vieles mehr im Zeenea-Blog.

Melden Sie sich zu unserem Newsletter an und werden Sie Teil unserer Community!

Let's get started

Make data meaningful & discoverable for your teams

Los geht’s!

Geben Sie Ihren Daten einen Sinn

Mehr erfahren >

Soc 2 Type 2
Iso 27001
© 2024 Zeenea - All Rights Reserved
Soc 2 Type 2
Iso 27001
© 2024 Zeenea - All Rights Reserved

Démarrez maintenant

Donnez du sens à votre patrimoine de données

En savoir plus

Soc 2 Type 2
Iso 27001
© 2024 Zeenea - Tous droits réservés.